If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+5x-14=0
a = 15; b = 5; c = -14;
Δ = b2-4ac
Δ = 52-4·15·(-14)
Δ = 865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{865}}{2*15}=\frac{-5-\sqrt{865}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{865}}{2*15}=\frac{-5+\sqrt{865}}{30} $
| 6(2y-1)-5(y+1)=0 | | 3(c−72)=33 | | 3(c−72)=33 | | -4x=7x+4 | | w/7.9-(0.14)=0.89 | | w/7.9-(0.14)=0.89 | | 0.89=w/7.9-(0.14) | | -13=-8+7.5h | | -13=-8+7.5h | | -13=-8+7.5h | | w2-18w+56=0 | | w2-18w+56=0 | | w2-18w+56=0 | | w2-18w+56=0 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | 2u+4(u+7)=-32 | | 2u+4(u+7)=-32 | | 2u+4(u+7)=-32 | | 3x^2)+14x=21 | | 4(2x-2)+2=8x-8 | | 84=-31+x2 | | x-(0.0105)(x)=25 | | x-(0.0105)(x)=25 | | x+13+x=91 | | 3x•6=14 | | 24=-4x;96,6,-6,-96 | | 24=-4x;96,6,-6,-96 | | x+13+x=91 |